Crop Residues:

Why They Should Be Buried Rather Than Burnt, from a Carbon Perspective

Stuart Strand

College of Forest Resources and Dept. Civil & Environ. Engineering University of Washington

Background

- Farming is mankind's largest scale activity, occupying 10% of the land area of the Earth
- Crop residues usually comprise 1.5 kg biomass per kg of harvested product
 - 0.24 Gt crop residue carbon (CR C) produced annually in US maize, soybean and wheat crops
 - Globally, about 1 Gt CR C available annually
 - One fourth of the annual increase in atmospheric carbon due to anthropogenic sources
 - Man-made atmospheric CO₂ increases by about 4 Gt C annually

This entire slide is lifted out of Metzger and Benford, 2001, Sequestering of atmospheric carbon through permanent disposal of crop residue, Climatic Change **49**, 11.

How Best to Use Crop Residues to Reduce Atmospheric Carbon Dioxide?

- Currently crop residue carbon returns to the atmosphere as residues rot on the ground
- Current plans are to use crop residues to produce cellulosic ethanol for use as fuel
- But is cellulosic ethanol production the most efficient use of crop residues?

The Alternative:

Crop Residue Ocean Permanent Sequestration — CROPS

- 75% of crop residue available
- Collect and bale
- Transport by truck to rivers
- River and ocean barge to off-shore site with depth greater than 1500 m
- Ballast with limestone
- Sink and monitor

Objectives

- Calculate the efficiency of fossil fuel carbon emission reduction by conversion of crop residues to cellulosic ethanol
 - How much fossil fuel carbon emissions is avoided per ton of crop residue carbon?
- Calculate the efficiency of carbon sequestration of Crop Residue Ocean Permanent Sequestration (CROPS)
 - How much carbon can be removed from the atmosphere by burying crop residues in deep ocean sediments?
 - How much fuel must be burned to transport crop residues to deep ocean?
- Carbon Sequestration Efficiency calculated for each process:

$$CSE = \frac{Carbon\ sequestered + Fossil\ fuel\ C\ emissions\ avoided}{Crop\ residue\ C\ processed}$$

Carbon Emitted From Fuel Use During Crop Residue Ocean Permanent Sequestration (CROPS)

Baling, including harvesting			3.50 L diesel/t CR
Transportation to barge by tractor trailer	200 km	38.5 net t CR km per L diesel	5.19L diesel/t CR
River barging	1000 km	231 net t CR km/L diesel	4.33 L diesel/t CR
Ocean barging, with ballast surcharge (2.7X)	1000 km	443 net t CR km/L diesel	6.09 L diesel/t CR
Total transportation			15.62L diesel/t CR
Total diesel oil used			19.1L diesel/t CR sequestered
Carbon content of diesel			0.73 kg C diesel/L diesel
Carbon emitted from diesel burnt during CROPS			14.0 kg C diesel/t CR sequestered
Fertilizer replacement			9.9 kg C for N/t CR sequestered
Total carbon emitted during CROPS			23.9 kg C emitted/t CR sequestered
Carbon content of CR			45% t CR C/100 t CR sequestered
Total carbon emitted during CROPS			t C emitted/ 5.31 100 t CR C sequestered

Carbon sequestration efficiency	t C removed from atmosphere / 94.7 100 t CR C sequestered
---------------------------------	---

Carbon Flow for Crop Residue Ocean Permanent Sequestration

Model Crop Residue/Ethanol Production Plant

Based on Aden et al., 2002, NREL Report TP-510-32438, "Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover"

Corn Stover input, 38 t CR per hr

15% of energy captured

Carbon Emissions Avoided by Cellulosic Ethanol Production from Crop Residues

based on Aden et al. 2002, Lignocellulosic Biomass to Ethanol Process Design ... For Corn Stover. NREL/TP-510-32438

Net carbon emission avoidance efficiency	33.40	t CO2 C emissions avoided / 100 t CR C processed
- Cranzor to retropiacomone	2.20	·
Fertilizer for N replacement		t fossil fuel C / 100 t CR C processed
C emissions during baling and transportation		t diesel C / 100 t CR C processed
Carbon content of diesel		kg C diesel/L diesel
Carbon content of CR		g CR C / g CR
Total diesel use for baling and transportation		L diesel/t CR processed
Transportation to ethanol plant by tractor trailer		L diesel/t CR processed
Baling, including harvesting	3.5	L diesel/t CR processed
CO2 C emissions during baling and transportation, N replacement		
Carbon emissions avoidance efficiency	37.0	t CO2 C emissions avoided /100 t CR C processed
Carbon emissions avaidance efficiency	27.0	t CO2 C emissions avaided /100 t CB C pressed
Total CO2 C emissions avoided	13.96	t CO2 C / hr
CO2 C emissions avoided by excess electricity	0.67	t CO2 C / hr
CO2 from electricity generation, using petroleum*		t CO2 C / MW hr
Excess electricity		MW hr / hr
Diesel emissions avoided by ethanol production	13.30	t CO2 C from diesel / hr
		MW hr / t diesel C
Energy density of diesel		MW hr / t diesel
		MW hr / hr
Energy density of ethanol	0.17	MW hr / kmol ethanol C
Ethanol product	1066	kmol ethanol C / hr
Energy outputs		
	37.720	TOIX O / TIII
Corn stover feedstock, crop residue carbon, CR C		t CR C / hr
Carbon inputs	2111	kmol CR C / hr

^{*}Carbon dioxide emissions from the generation of electric power in the US, DOE and EPA †200 km, 38.5 net t CR km/L diesel

Carbon Flow for Celluosic Ethanol Production from Crop Residues

Summary

Carbon Sequestration Efficiency

% of Crop Residue C Harvested That Is Sequestered or Used to Avoid Fossil C Emission to Atmosphere

 $\textit{CSE} = \frac{\textit{Carbon sequestered} + \textit{Fossil fuel C emissions avoided}}{\textit{Crop residue C processed}}$

Advantages of CROPS

Immediate application

- Low tech
 - · No unproven technologies involved
 - Could be implemented within 2-3 years
- Each year atmospheric CO₂ accumulation could be reduced by 1 GtC using CROPS
- 25% reduction of global anthropogenic induced annual increase
- In 10+ years before demonstration of practical cellulosic ethanol production,

10 GtC could be removed from atmosphere using CROPS before cellulosic ethanol is deployed

Permanence

- DOE has set a goal of 0.01% per year for global CO₂ reservoirs
- Below 1500 m the leakage rate of dissolved CO₂ from ocean sequestration sites would be less than 0.1% per year
 - Burial and recalcitrance of CROPS lignocellulose would likely reduce the leakage rate to near 0.01% per year

Conclusions

Crop residues can make an immediate and substantial reduction in atmospheric CO₂,

If crop residues are sequestered using CROPS

Cellulosic ethanol production can remove only one third as much carbon from the atmosphere as burial by CROPS

Needed Research

- Determine impacts of crop residues on deep ocean benthic communities
 - Which methods for placing crop residues on ocean floor minimize impact on ocean diversity: concentrated or dispersed?
 - Determine best sites in the deep ocean for crop residue burial
- Determine long term oxidation rates in situ
- Determine best methods for ballasting crop residues
- Optimize handling and transport of crop residues

Impact on Ocean Floor Habitat

- 5 x 10⁹ m³ CR annually from US
- Assume CR deposited 1 m deep per year
- Total area required would be 450 km²
- About one part per million of the Earth's ocean area

Cellulosic Ethanol Production With CO₂ Capture and Sequestration

- CO₂ cannot be captured from ethanol combustion in transportation uses
- CO₂ can be captured from the ethanol production plant
 - Capture efficiency
 - Energy penalty

Carbon Emissions Avoided by Cellulosic Ethanol Production from Crop Residues with Liquid CO₂ Capture and Sequestration

CO2 emissions from combustion, scrubber vent, aerobic vent,			
losses*		2,036	kmol CO2 C / hr
		24.4	t CO2 C / hr
Corn stover feedstock, crop residue carbon, CR C		37.7	t CR C / hr
		64.8	
Capture efficiency by CO2 sequestration process		85%	t CO2 C captured / t CO2 C processed
C sequestration efficiency compared to feedstock CR		55	t CO2 C captured / 100 t CR C processed
	Low	High	
Energy losses during C capture, estimated*	33%	11%	percent losses due to energy expended during C capture
C sequestration efficiency, energy corrected	37	49	t CO2 C / 100 t CR C processed
Losses due to transport and injection of liq CO2		1.4	t diesel C / 100 t CO2 C injected
Net C sequestration efficiency, CO2 capture compared to			
feedstock CR	35	48	t CO2 C sequestered / 100 t CR C processed
Net C emission avoidance efficiency due to ethanol production		33.4	t CO2 C sequestered / 100 t CR C processed
Total carbon seqestration and avoidance efficiency	69	81	t CO2 C / 100 t CR C processed

^{*}Aden et al. 2002, Lignocellulosic Biomass to Ethanol Process Design ... For Corn Stover. NREL/TP-510-32438 †http://www.ieagreen.org.uk/presentations/JDcapture.pdf

Summary

Carbon Sequestration Efficiency

% of Crop Residue C Harvested that is Sequestered or Used to Avoid Fossil C Emission to Atmosphere

 $CSE = \frac{Carbon \, sequestered + Fossil \, fuel \, C \, emissions \, avoided}{Crop \, residue \, C \, processed}$

